Battery Energy Storage Systems

October 2024

This publication was developed in collaboration between the PwC Sustainability practice and Strategy&, PwC's global strategy consulting business. Our purpose is to build trust in society and solve important problems.

Strategy& is a global strategy consulting business uniquely positioned to help deliver your best future: one that is built on differentiation from the inside out and tailored exactly to you. As part of PwC, we build winning systems at the heart of growth daily. We combine our powerful foresight with this tangible know-how, technology, and scale to help you create a better, more transformative strategy from day one. As the only at-scale strategy business part of a global professional services network, we embed our strategy capabilities with frontline teams to show you where you need to go, the choices you'll need to make to get there, and how to get it right.

www.strategyand.pwc.com/

© 2024 PwC Certification Services GmbH. All rights reserved. In this document, "PwC" refers to PwC Certification Services GmbH, which is a member firm of PricewaterhouseCoopers International Limited (PwCIL). Each member firm of PwCIL is a separate and independent legal entity.

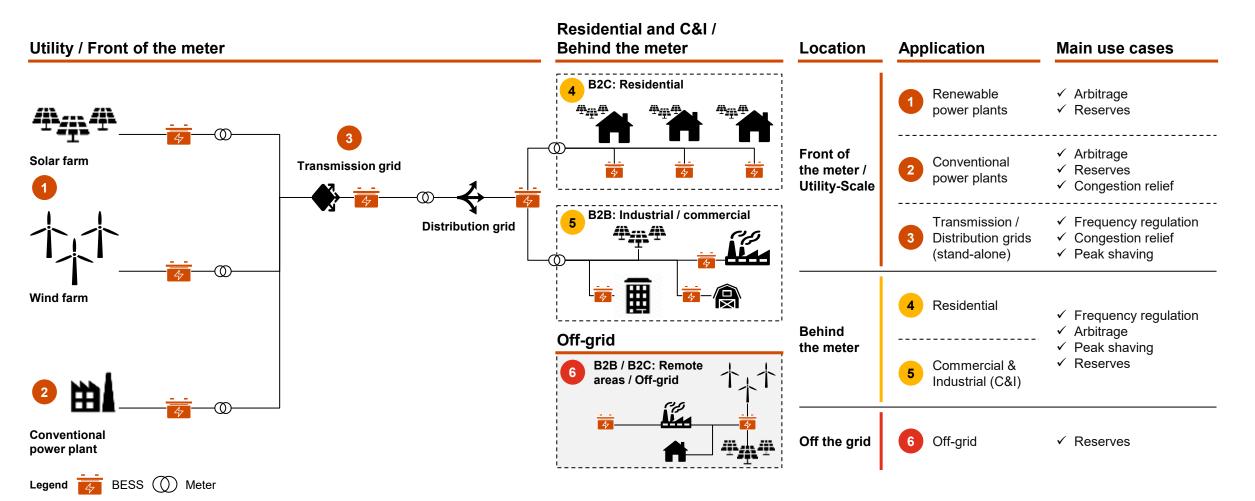
Battery energy storage systems provide multiple benefits incl. revenue potential, cost reductions, resiliency and sustainability

Battery energy storage systems (BESS) overview

Energy storage system

- Enable storage of energy from renewables, like solar PV, to be stored and released when needed
- Includes battery cell, pack, container, HVAC, fire suppression system, etc.
- Grid connection
- Enables electricity to be purchased and distributed through the grid
- Permission needed to establish connection

	Revenue	 Access to ancillary services (e.g. FCR) Minimize curtailment, generate new revenue streams Sell energy surplus on energy market
	Savings	 Shift consumption to lower-cost hours Optimize physical setup (e.g. oversizing) and self-consumption if co-located with on-site generation Reduce reliance on the grid
	Resiliency	 Provide backup power and black start capability Leverage stored solar energy Ensure power supply during outages
	Sustainability	 Increases peak load for PV generation Improves self-consumption of generation Grows share of renewables to the grid


Key benefits

Power conversion system

- Device for bidirectional conversion of electrical energy between the battery system and the grid
- Includes Inverter, transformer, high voltage switchgear, etc.

BESS have 'front of the meter', 'behind the meter' and 'off grid' applications

BESS applications

The BESS market is split into four customer segments – residential, small-scale C&I, large-scale C&I and front-of-the-meter Utility

BESS customer segments Typical battery size

Residential

5-15 kW

Detached houses

- Row houses
- · Lowest battery capacity
- Typically purchased in conjunction with Solar PV installation

Small-scale C&I

0.1 – 1 MW

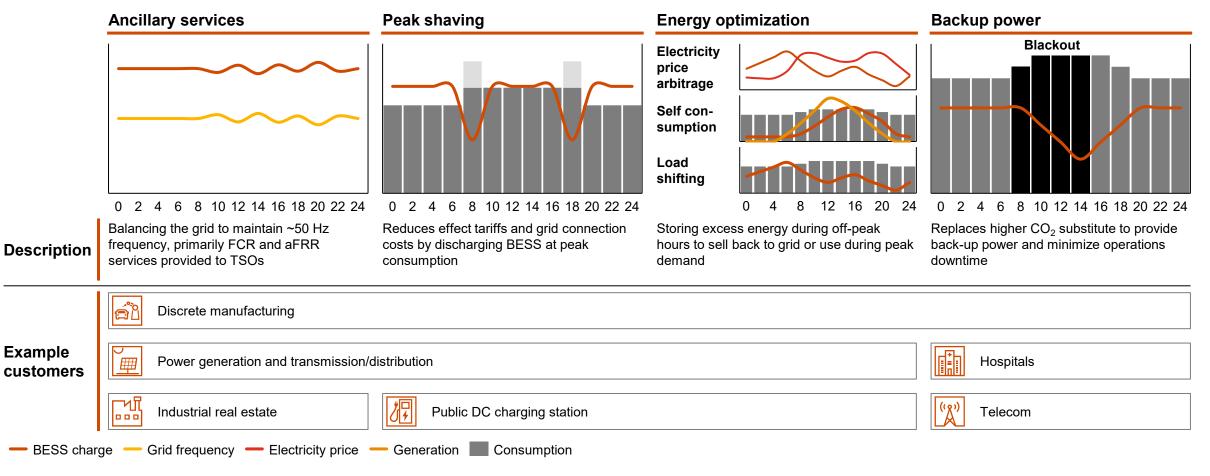
- Farming
- Multi-unit dwelling
- Office buildings
- Low battery capacity as peak load is lower than other segments

Large-scale C&I

1 – 5 MW

- Industrial facilities
- Larger public buildings
- Standalone
- Battery size typically around 10-50% of peak load
- Used for reserve power in addition to revenue streams

Utility (Front of the meter)



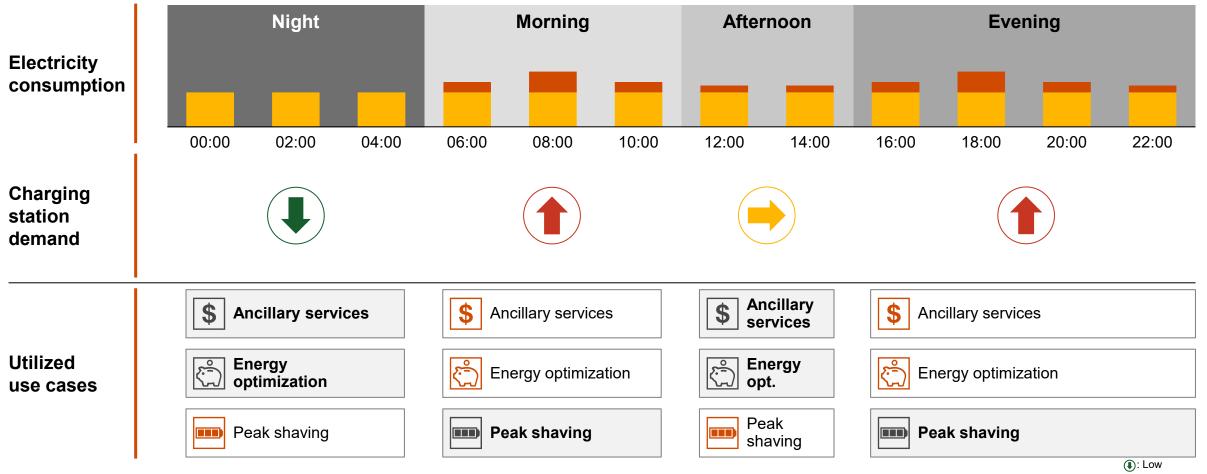
5 – 300 MW

- Not connected to buildings
- Front of the meter with direct connection to the grid
- Can be built in combination with generation

BESS is utilized in different ways, with ancillary services representing the major application use case today

Current primary use cases for BESS

A successful business case involves the optimal marketing of the BESS asset stacking different revenue sources from different markets


Utility use case stacking

Long Term Hedging	Reserve markets ¹	Day-Ahead Market	Intraday Auctions / Continuous Market	Imbalance Management ²
 OTC Earnings from proxy and revenue hedging (Floors, Tolling) Capacity markets 	 ENTSO-E/TSOS Earnings from capacity prices for FCR (managed by ENTSO-E) Earnings from frequency response capacity and actual power delivery prices (managed by local TSO) 	 EPEX/NORDPOOL Earnings from day- ahead auction time spreads Under constrained of reserve market position 	 EPEX/NORDPOOL Earning from intraday auction spreads and from price volatility on continuous intraday market 	 DELIVERY Earnings from real time grid status Local flexibility management
 Financial asset backed trading 			 Under restriction and optimization of position after day-ahead auction and respective intraday auctions 	

2) Only in jurisdictions wherever allowed or a Local Flexibility Market is established and/or Passive Balancing is allowed

Deteriorating ancillary services remuneration requires ad-hoc use case stacking to unlock full BESS potential

Public EV DC charging station use case stacking

Medium
 High

Sources: Desktop research, Strategy& analysis

Accurate CapEx and OpEx estimates with proper financing are essential for changing regulatory and market conditions

Cost estimation in a BESS Project

Composition of CAPEX

CAPEX category	Description	
	Battery cabinets	
System	Management systems	
	 Balance-of-system components 	
	Connection fee	
Grid connection	Connection equipment	
	 Energy-management system 	
Construction	 Engineering, procurement and construction Labour and equipment costs 	
Land	Costs associated with acquisition/leasing of land	
Other ¹	 Permits, regulatory, tax 	

1) Overall business case should appropriately consider degradation and efficiency effects

2) Different conditions and structures in different regions

Components of	OPEX
---------------	------

OPEX category		Description
Variable costs	Operations and maintenance (O&M)	Includes general, scheduled and unscheduled maintenance
	Replacement of parts	 Replacement of consumable parts
	Grid fees ²	 Fees paid to transmission and distribution system operators
	Electricity costs	Cost of electricity used for charging and operating
	Optimiser costs	Costs incurred by optimiser
Fixed costs	Operating labour	Labour for day-to-day operation
	Property payments	Property taxes
	Insurance	Insurance for BESS
	Administrative	Administrative fees and labour

Within a general valuation framework regional differences should be properly considered

Overview of key European markets

Revenue Streams Long Term Short Term Wholesale Local Flexibility **Key Ancillary Real Time Grid** Intraday ltem **Capacity Market Intraday Auctions** Markets **Policy Hurdles** (EU focus) Services Day Ahead Continuous Balancing Financing/EX (\mathbf{X}) Extension of grid fee (\mathbf{X}) FCR. aFRR. mFRR \sim exemption to 2029 In debate Frequency Response 2 Constructive policy $(\checkmark$ (\checkmark) (DC/DM/DR), Reserve framework, deep Services (STOR⁴) lending pools Piclo Flex 3 2 FCR, aFRR, mFRR, and Limited offtake and lending (\checkmark) Replacement Reserves \sim activity (RR) Primary Reserve (FCR), Headwind from Terna 12-14 3 Secondary Reserve 1 vear inflation linked contracts \checkmark \sim (aFRR), Tertiary backing high LTV, zonal and Reserve (mFRR) nodal value uplift <u>.</u> Potential headwinds from ~ FCR, aFRR, mFRR, capacity market introduction In legislative process 3 2 (\checkmark) Grid Fees reform under (\mathbf{X}) FCR. aFRR. mFRR discussion GOPACS

(): Yes

Contended

(X): Restricted/No

(I): Low

(A): High

(i): Medium

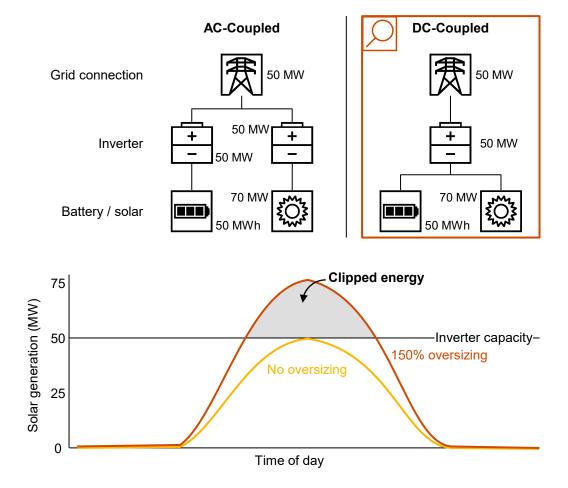
1) Either discouraged, restricted or no statement from responsible TSOs; 2) Generally allowed within a passive balancing grid management approach; 3) Limited liquidity depending on market conditions; 4) Expected partial or complete decommissioning

Source: Timera Energy, PwC Analysis

Co-Location offers potential advantages in the joint management of a BESS and a RES-park

BESS exploits technical restrictions and grid congestion to generate additional sources of revenues

DC-Coupling


Co-location refers to a battery energy storage system physically located on the same site as generation, demand, or both, and shares a grid connection.

DC-coupling refers to a co-located battery and solar farm being connected **behind a shared inverter** where power is in direct current (DC). Both assets operate in DC - and require an inverter to convert electricity to/from the alternating current (AC) in which the electricity grid operates.

Pro: Reduced equipment duplication, lowering capital costs. DC-coupling a battery and solar farm eliminates the necessity for multiple inverters.

Con: Technical complexity. DC-coupling necessitates additional equipment, such as a DC-DC converter, to ensure that the battery and solar system operate at compatible voltage levels. This added complexity, along with reduced cost efficiencies in other areas, can diminish the overall cost benefits of DC-coupling.

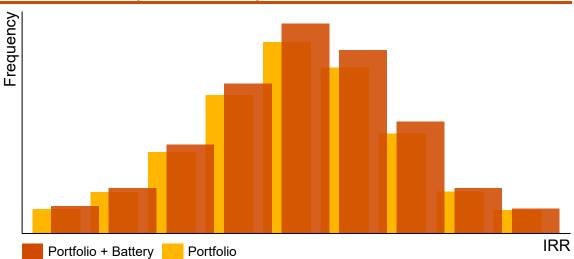
The choice between AC-coupling and DC-coupling may ultimately depend on the operational advantages each offers. For DC-coupling, the primary benefit lies in oversizing the solar farm, which allows for capturing the value of the otherwise "clipped" energy.

Source: Modo Energy, PwC Analysis

Combining renewables and batteries in one portfolio can create significant positive effects

Exemplary renewables and BESS portfolio

-0,12


Illustrative Revenue Correlation of Selected Renewables &

Batteries 0,58 0,97 -0.12 Solar 1 Wind 0.58 0.67 0,25 1 Solar 0.97 0.67 1 -0.02

0.25

-0,02

Illustrative IRR portfolio comparison

Key Remarks

Battery

Ideal complementing potential to a renewable asset portfolio given different solar assets display a strong correlation in revenues, batteries have weak to no correlation to renewable assets¹

1

- Improvement of capture rates of renewable portfolio
- Mitigating technical curtailments by grid operators as co-location with solar PV parks would allow the battery storage systems to charge any technically curtailed energy during the day and discharge it at night without curtailment

1) Depending on location Source: Aquila Capital, PwC Analysis

Curious to know more?

Find out more in our Whitepaper:

Empowering Europe's Energy Future: Navigating the Lifecycle of Battery Energy Storage System Deals

Download

Contact Us

Daniele Spinella Senior Manager, PwC Deutschland

Munich +49 69 95855555 +49 1515 5461867

daniele.s.spinella@pwc.com

Eva Poglitsch Director, Strategy& Wien +43 1 51822938 +43 664 5152930 eva.poglitsch@pwc.com

© 2024 PwC Certification Services GmbH.

All rights reserved. In this document, "PwC" refers to PwC Certification Services GmbH, which is a member firm of PricewaterhouseCoopers International Limited (PwCIL). Each member firm of PwCIL is a separate and independent legal entity.